Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(17): 6996-7005, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37128750

RESUMO

Isomeric molecules are important analytes in many biological and chemical arenas, yet their similarity poses challenges for many analytical methods, including mass spectrometry (MS). Tandem-MS provides significantly more information about isomers than intact mass analysis, but highly similar fragmentation patterns are common and include cases where no unique m/z peaks are generated between isomeric pairs. However, even in such situations, differences in peak intensity can exist and potentially contain additional information. Herein, we present a framework for comparing mass spectra that differ only in terms of peak intensity and include calculation of a statistical probability that the spectra derive from different analytes. This framework allows for confident identification of peptide isomers by collision-induced dissociation, higher-energy collisional dissociation, electron-transfer dissociation, and radical-directed dissociation. The method successfully identified many types of isomers including various d/l amino acid substitutions, Leu/Ile, and Asp/IsoAsp. The method can accommodate a wide range of changes in instrumental settings including source voltages, isolation widths, and resolution without influencing the analysis. It is shown that quantification of the composition of isomeric mixtures can be enabled with calibration curves, which were found to be highly linear and reproducible. The analysis can be implemented with data collected by either direct infusion or liquid-chromatography MS. Although this framework is presented in the context of isomer characterization, it should also prove useful in many other contexts where similar mass spectra are generated.


Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Isomerismo
2.
ACS Cent Sci ; 5(8): 1387-1395, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31482121

RESUMO

Proteinaceous aggregation is a well-known observable in Alzheimer's disease (AD), but failure and storage of lysosomal bodies within neurons is equally ubiquitous and actually precedes bulk accumulation of extracellular amyloid plaque. In fact, AD shares many similarities with certain lysosomal storage disorders though establishing a biochemical connection has proven difficult. Herein, we demonstrate that isomerization and epimerization, which are spontaneous chemical modifications that occur in long-lived proteins, prevent digestion by the proteases in the lysosome (namely, the cathepsins). For example, isomerization of aspartic acid into l-isoAsp prevents digestion of the N-terminal portion of Aß by cathepsin L, one of the most aggressive lysosomal proteases. Similar results were obtained after examination of various target peptides with a full series of cathepsins, including endo-, amino-, and carboxy-peptidases. In all cases peptide fragments too long for transporter recognition or release from the lysosome persisted after treatment, providing a mechanism for eventual lysosomal storage and bridging the gap between AD and lysosomal storage disorders. Additional experiments with microglial cells confirmed that isomerization disrupts proteolysis in active lysosomes. These results are easily rationalized in terms of protease active sites, which are engineered to precisely orient the peptide backbone and cannot accommodate the backbone shift caused by isoaspartic acid or side chain dislocation resulting from epimerization. Although Aß is known to be isomerized and epimerized in plaques present in AD brains, we further establish that the rates of modification for aspartic acid in positions 1 and 7 are fast and could accrue prior to plaque formation. Spontaneous chemistry can therefore provide modified substrates capable of inducing gradual lysosomal failure, which may play an important role in the cascade of events leading to the disrupted proteostasis, amyloid formation, and tauopathies associated with AD.

3.
Anal Chem ; 91(20): 13032-13038, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31498611

RESUMO

Spontaneous chemical modifications play an important role in human disease and aging at the molecular level. Deamidation and isomerization are known to be among the most prevalent chemical modifications in long-lived human proteins and are implicated in a growing list of human pathologies, but the relatively minor chemical change associated with these processes has presented a long standing analytical challenge. Although the adoption of high-resolution mass spectrometry has greatly aided the identification of deamidation sites in proteomic studies, isomerization (and the isomeric products of deamidation) remain exceptionally challenging to characterize. Herein, we present a liquid chromatography/mass spectrometry-based approach for rapidly characterizing the isomeric products of Gln deamidation using diagnostic fragments that are abundantly produced and capable of unambiguously identifying both Glu and isoGlu. Importantly, the informative fragment ions are produced through orthogonal fragmentation pathways, thereby enabling the simultaneous detection of both isomeric forms while retaining compatibility with shotgun proteomics. Furthermore, the diagnostic fragments associated with isoGlu pinpoint the location of the modified residue. The utility of this technique is demonstrated by characterizing the isomeric products generated during in vitro aging of a series of glutamine-containing peptides. Sequence-dependent product profiles are obtained, and the abundance of deamidation-linked racemization is examined. Finally, comparisons are made between Gln deamidation, which is relatively poorly understood, and asparagine deamidation, which has been more thoroughly studied.


Assuntos
Cristalinas/análise , Glutamina/análogos & derivados , Glutamina/análise , Cromatografia Líquida , Cristalinas/química , Cristalinas/metabolismo , Glutamina/metabolismo , Humanos , Hidrólise , Iodobenzoatos/química , Cinética , Cristalino/química , Espectrometria de Massas , Fatores de Tempo
4.
J Biol Chem ; 294(19): 7546-7555, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30804217

RESUMO

Long-lived proteins are subject to spontaneous degradation and may accumulate a range of modifications over time, including subtle alterations such as side-chain isomerization. Recently, tandem MS has enabled identification and characterization of such peptide isomers, including those differing only in chirality. However, the structural and functional consequences of these perturbations remain largely unexplored. Here, we examined the impact of isomerization of aspartic acid or epimerization of serine at four sites mapping to crucial oligomeric interfaces in human αA- and αB-crystallin, the most abundant chaperone proteins in the eye lens. To characterize the effect of isomerization on quaternary assembly, we utilized synthetic peptide mimics, enzyme assays, molecular dynamics calculations, and native MS experiments. The oligomerization of recombinant forms of αA- and αB-crystallin that mimic isomerized residues deviated from native behavior in all cases. Isomerization also perturbs recognition of peptide substrates, either enhancing or inhibiting kinase activity. Specifically, epimerization of serine (αASer-162) dramatically weakened inter-subunit binding. Furthermore, phosphorylation of αBSer-59, known to play an important regulatory role in oligomerization, was severely inhibited by serine epimerization and altered by isomerization of nearby αBAsp-62. Similarly, isomerization of αBAsp-109 disrupted a vital salt bridge with αBArg-120, a contact that when broken has previously been shown to yield aberrant oligomerization and aggregation in several disease-associated variants. Our results illustrate how isomerization of amino acid residues, which may seem to be only a minor structural perturbation, can disrupt native structural interactions with profound consequences for protein assembly and activity.


Assuntos
Envelhecimento , Agregados Proteicos , Multimerização Proteica , Cadeia A de alfa-Cristalina/química , Cadeia B de alfa-Cristalina/química , Humanos , Fosforilação , Domínios Proteicos , Cadeia A de alfa-Cristalina/metabolismo , Cadeia B de alfa-Cristalina/metabolismo
5.
Anal Chem ; 90(19): 11581-11588, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30179447

RESUMO

Glycans are fundamental biological macromolecules, yet despite their prevalence and recognized importance, a number of unique challenges hinder routine characterization. The multiplicity of OH groups in glycan monomers easily afford branched structures and alternate linkage sites, which can result in isomeric structures that differ by minute details. Herein, radical chemistry is employed in conjunction with mass spectrometry to enable rapid, accurate, and high throughput identification of a challenging series of closely related glycan isomers. The results are compared with analysis by collision-induced dissociation, higher-energy collisional dissociation, and ultraviolet photodissociation (UVPD) at 213 nm. In general, collision-based activation struggles to produce characteristic fragmentation patterns, while UVPD and radical-directed dissociation (RDD) can distinguish all isomers. In the case of RDD, structural differentiation derives from radical mobility and subsequent fragmentation. For glycans, the energetic landscape for radical migration is flat, increasing the importance of the three-dimensional structure. RDD is therefore a powerful and straightforward method for characterizing glycan isomers.


Assuntos
Polissacarídeos/análise , Espectrometria de Massas em Tandem , Raios Ultravioleta , Cromatografia Líquida de Alta Pressão , Isomerismo , Fotólise/efeitos da radiação , Polissacarídeos/química
6.
ACS Chem Biol ; 12(11): 2875-2882, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28984444

RESUMO

Deamidation of asparagine is a spontaneous and irreversible post-translational modification associated with a growing list of human diseases. While pervasive, deamidation is often overlooked because it represents a relatively minor chemical change. Structural and functional characterization of this modification is complicated because deamidation of asparagine yields four isomeric forms of Asp. Herein, radical directed dissociation (RDD), in conjunction with mass spectrometry, is used to identify and quantify all four isomers in a series of model peptides that were subjected to various deamidation conditions. Although primary sequence significantly influences the rate of deamidation, it has little impact on the relative proportions of the product isomers. Furthermore, the addition of ammonia can be used to increase the rate of deamidation without significantly perturbing isomer populations. Conversely, external factors such as buffer conditions and temperature alter product distributions but exhibit less dramatic effects on the deamidation rate. Strikingly, the common laboratory and biologically significant bicarbonate buffer is found to strongly promote racemization, yielding increased amounts of d-Asp and d-isoAsp. These outcomes following deamidation have broad implications in human aging and should be considered during the development of protein-based therapeutics.


Assuntos
Amidas/química , Asparagina/química , Peptídeos/química , Sequência de Aminoácidos , Soluções Tampão , Isomerismo , Espectrometria de Massas , Modelos Moleculares , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...